我目前是中国科学技术大学的博士研究生,聚焦锂离子电池的梯次利用研究。我的研究聚焦于人工智能与锂离子电池梯次利用的交叉领域。欢迎各位同行、学者一同交流学习,共同进步。
- 最后更新于2025年5月28日
|
![]() 中国科学技术大学2023 至今
火灾科学国家重点实验室 - 硕博连读 |
|||||||||||||
|
![]() 俄克拉荷马州立大学2022-2023
安全科学与工程 - 本科生GPA: 3.83 / 4修读课程:
课外活动:
|
|||||||||||||
|
![]() 西南交通大学2019-2022
安全科学与工程 - 本科生GPA: 3.83 / 4修读课程:
课外活动:
|
该专利提出了一种利用支持向量机(SVM)算法对退役电池进行快速分选的方法。首先根据退役电池的外部参数构建二值特征向量,然后进行一次分类,区分梯次使用和直接回收的电池。之后对电池进行高倍率充电,获得增量容量(IC)曲线,提取关键特征作为二次分选指标。将这些结果与一次分类相结合,输入到多分类模型中,实现精准分选,提高处理不同健康状态电池的效率和准确性。
Recycling of massive spent lithium-ion batteries (LIBs) is urgently required with the development of electric vehicles and energy storage industries. However, due to their complex composition and uncertain state, spent LIBs pose significant fire hazards during the recycling process. In this work, liquid nitrogen (LN) and dry ice (DI) were utilized as refrigerants to investigate the inerting mechanism and thermal stability of spent LIBs. Post-mortem and thermal analyses indicated that when spent LIBs are subjected to low temperatures (below −60 °C), the solidification of the electrolyte and the separation of internal components cause an increase in internal resistance, leading to a drop in terminal voltage where it cannot deliver energy. Nail penetration tests demonstrated that cryogenic freezing effectively suppresses thermal runaway, reducing peak internal battery temperatures from 921.2 °C to below 150 °C, with a temperature rise rate suppressed to under 3 °C/s. Additionally, DI exhibited a more sustained cooling effect than LN and is proposed as a safer and more cost-effective alternative for enhancing safety in LIBs recycling.